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Introduction.
This case-study describes the theoretical background and the implementation of OpenFOAM solver
suitable  for  the  simulation  of  incompressible  magneto-hydrodynamic  (MHD)  flows,  called  as
mhdFoam. This class is a topic of interest for many research activities and industrial applications
including nuclear  fusion  reactors,  materials  engineering  and metallurgy.  The case that  is  being
simulated  is,  the  modified  version  of  the  tutorial  case  (in  opt/  OpenFOAM-4.x/  tutorials/
electromagnetics/ mhdFoam/ hartmann) where the 2D MHD flows that arise in a rectangular duct
with  walls  of  arbitrary  electrical  conductivity  when  an  electric  conductive  fluid  moves  in  the
presence of a transverse magnetic field.

Theoretical background.
A magneto-hydrodynamic flow occurs whenever the motion of an electric conductive fluid happens
in the presence of an imposed magnetic field which induces currents and the velocity distribution of
the flow is significantly modified by the arising of Lorentz forces which oppose the movement in
directions perpendicular to the field lines. However, the influence exerted by the magnetic field is
not unidirectional i.e. the same currents generate a secondary magnetic field which, abiding to the
Faraday’s law, lessen the imposed one. Therefore, the velocity and magnetic field are coupled and
the flow features can no longer be described by the ordinary hydrodynamics laws but a new set of
governing equations have been developed.

For a laminar and incompressible MHD flow, the governing differential equations are obtained by
combining the Navier-Stokes and Maxwell equations. Considering an externally applied magnetic
field B0, the total field acting on the fluid can be represented by the sum of the external and the
induced one.

B=B0+b (1)

The magnetic field influence on the flow could be represented by proper source terms added to the
following equations.

Conservation of mass
∇ .u=0 (2)
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Transport of magnetic induction
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Here μm is the magnetic permeability. The lorrentz for term in equation (3) has not been explicitly
defined, therefore by recalling fundamental laws of electromagnetism such as,

Ampere’s law,
∇×B  =  μm j (5)



Therefore the lorrentz force term can be represented as,
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which has also been depicted in the source code as,

fvVectorMatrix UEqn
(
fvm::ddt(U)
+ fvm::div(phi, U)
- fvc::div(phiB, 2.0*DBU*B)
- fvm::laplacian(nu, U)
+ fvc::grad(DBU*magSqr(B))
);
if (piso.momentumPredictor())
            {
                solve(UEqn == -fvc::grad(p));
            }
dimensionedScalar DB = 1.0/(mu*sigma);
DB.name() = "DB";
dimensionedScalar DBU = 1.0/(2.0*mu*rho);
DBU.name() = "DBU";

// --- B-PISO loop
while (bpiso.correct())
{
fvVectorMatrix BEqn
(
fvm::ddt(B)
+ fvm::div(phi, B)
- fvc::div(phiB, U)
- fvm::laplacian(DB, B)
);

Therefore to sum it up, according to the Faraday’s law of electromagnetic induction the interaction
of electrically conducting fluid with imposed magnetic field, generates an electromagnetic force.
Simultaneously, electric currents are generated as per ohm’s law ( j  =  σ (E  +  u×B) ), which
give  rise  to  an  induced  magnetic  field  (b)  which  in  combination  with  imposed  magnetic  field
interacts with current density (j) to generate Lorentz force (j × B) . This force tends to retard the
flow in core region and thus resulting in flatter velocity profile compared to pure hydrodynamic
flow, where we obtain a parabolic flow profile.

Simulation set-up.
The standard tutorial for mhdFoam has been chosen, and the geometry has slightly been modified
such that we obtain a domain of parallel plates of infinite flow length, by implementing the periodic
boundary condition by making changes to the following files,

1. blockMeshDict.
boundary
(
    inlet
    {



        type mappedPatch;
offset (2 0 0);
sampleRegion region0;
sampleMode nearestCell;
samplePatch none;

        faces
        (
            (0 4 7 3)
        );

2. Velocity (U).
inlet
    {
        type            mapped;
        value           uniform (1 0 0);

interpolationScheme cell;
setAverage true;
average (1 0 0);

    }
outlet
    {
        type            inletOutlet;

inletValue uniform (0 0 0);
value uniform (0 0 0);

     }

This basically maps the values all the computed values at the outlet on to the inlet patch, which
allows us to have a smaller duct, coarser mesh, which saves us a lot of computational time. The
modified domain is depicted below.

Fig. 1. Flow domain.

The magnetic field is imposed perpendicular to the direction of the flow i.e. on the lower and upper
walls, which generates electromagnetic forces within the fluid. The parameter that expresses the
relation  between,  the  electromagnetic  and  viscous  forces  is  called  as  the  hartmann  number.
Mathematically,
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Hartmann  number(M )  = (
Electromagnetic forces

Viscous forces
)

1/2

 =  BL√
σ
ρν (7)

Here  σ is  the  electrical  conductivity,  L is  half  the  characteristic  length,  and  B  is  the  applied
magnetic field.  The greater the hartmann number, higher are the electromagnetic forces and more
will be the devation from regular flow. The magnetic field greatly affects the boundary layer. The
modified boundary layer is called as the Hartmann layer, 

Hartmann  layer  thickness (δH)  =  
1
M

(8)

It  is  clear  that  by  increasing  the  hartmann  number  the,  the  hartmann  layer  thickness  reduces,
therefore during simulations, five cell points have been kept in the hartmann layer. The flow profile/
velocity distribution completely depends on the Hartmann number and therefore a hypothetical fluid
(arbitrary fluid properties) has been chosen for simulations. The velocity profile is given by,

U  =  U i
M . cosh M

M .cosh M−sinh M
.[1−

cosh M . x
cosh M

] (9)

Here Ui is the inlet velocity (Ui=1 m/s) and x is the y-cordinate of the point along the duct. In this
case-study hartmann number is varied by varying, the magnetic field and simulations have been
performed Hartmann numbers 10, 50, 100, 500. The post- processing has been done by writing
codes  in  Python 3.6.  The y co-ordinates  of  the cell  centres (mesh)  have been used to  plot  the
analytical functions.
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2
 in  (9)  and  by  further

simplifications, we obtain the analytical relation in two seperate parts, for the positive and negative
points, 
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The main purpose of developing this expression is to covert the ex form in (9) to e2x form, which
helps  us  in  error  minimization.  The resulting  plots  from the  two expressions  above have  been
concatenated and have been displayed in the following sections.

Post-processing.
The set  of points/  values over which the analytical  expression has been evaluated,  are  the cell
centre/ mid point co-ordinates. The plots obtained from simulation have also been developed from
the values at these cell centre co-ordinates. This has been done to avoid any kind of interpolation or
extrapolation which other post-processing softwares usually do.

These  cell  centre  values  have  been  obtained  by  utilising  the  sampling  dictionary  from  the
postProcess utility. This sampling dictionary, is located in the system folder, and has to be executed
using the following command in the main folder.



“postProcess -func sample”

This  will  create  a  folder  called  as  postProcessing  in  the  main  folder,  which  would  contain
postProcessed data for every time step.  However, some changes have been made to the original
sampling dictionary and the modified dictionary is shown below,

type sets;
libs ("libsampling.so");

interpolationScheme cell;

setFormat       raw;

sets
(
    line_centreProfile
    {
        type    midPoint;
        axis    distance;
        start   (1 -1 0.01);
        end     (1 1 0.01);
    }
);

fields          ( Ux );

The start and the end location cordinates inside the geometry have to be mentioned inside start and
end paranthesis. The field/entities whose data is desired has to be mentioned in the field paranthesis.

Results.
The simulations results agree with the theoretical studies i.e. velocity profile keeps on getting flatter
by increasing the Hartmann number. The figure below shows comparison the velocity profiles for
flows with various hartmann numbers.

Fig. 2. Comparison of various flow profiles



The simulation results agree very much with the analytical results and the error is below 1% as
shown below,

    
Fig. 3. Comaprison of analytical and simulation flow profiles.

The cellcentre values of the mesh have been plotted in the two graphs above. The number of cells
keep on increasing along the transverse direction with the increase in the Hartmann number as the
Hartmann layer thickness reduces. The details of the simulation have been tabulated below,

Hartmann number Number of cells Simulation time

10 40 x 40 =1600 3.01s

50 40 x 40 =1600 12.89s

100 40 x 60 =2400 35.34s

500 40 x 100 =4000 17 mins 10s

The simulation time is observed to drastically rise with the increase in Hartmann number, because
of the Courant number criterion below,

C  +  2 L  +  
vΔ t

Δ x2
 ≤1 (12)

where C is the Courant-Friedrichs-Lewy condition, L is the Von Neumann stability parameter, 

L  =  
σBo

2
Δ t

ρ (13)

This is a critical parameter to keep the simulation running, as by increasing the Magnetic field, L
increases even more, and therefore to keep the condition satisfied, Δt has to be reduced a lot, which
increases simualtion time, which makes higher Hartmann number simulations even more complex.

Conclusion and future work.
The simulation and analytical results have been found to be in a very good agreement, as well as the
gradients  in  the  Hartmann  layer  have  been  captured.  However,  some  fluctuations  in  the  flow



velocity are observed if the the number of cells along the x direction are kept below 40 during
simulations. This can be attributed to the numerical instabilities in obtaining the solution of the
induction equation. 

A more stable solver is needed to be developed to overcome these instabilities for higher Hartmann
number simulations as well as to reduce the time complexity.
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