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1. Introduction 

Consider a subsonic flow through a convergent nozzle. The quasi-one-dimensional equations 

(section 2.1) confirm that the flow speeds up along the nozzle, reaches sonic speed and then 

slows down. Therefore, for a gas to expand isentropically from subsonic to supersonic speeds, 

it must flow through a convergent-divergent duct. The minimum area, called throat, that divides 

the convergent and divergent sections of the duct has sonic flow. Rocket engines are primarily 

convergent-divergent nozzles which expand the exhaust gases to high-velocity, supersonic 

speeds. A convergent-divergent nozzle is sometimes called a de Laval (or Laval) nozzle. 

Depending upon the geometry and exit conditions, the flow through the convergent-divergent 

nozzles have different characteristics. 

2. Governing Equations 

The Navier-Stokes equations for an inviscid compressible flow in an arbitrary domain is 

𝜕(𝜌𝑢⃗ )

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝑢⃗ )] + ∇𝑝 = 0 

where all symbols have their usual meaning. The Navier-Stokes equation is supplemented with 

the conservation of mass 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢⃗ ) = 0  

Conservation of total energy for an inviscid compressible flow gives 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇. [𝑢⃗ (𝜌𝐸)] + ∇. (𝑝𝑢⃗ ) = 0 

where the total energy density 𝐸 = 𝑒 + |𝑢⃗ |/2 with 𝑒 the specific internal energy. 

The 3 equations are supplemented with an equation of state which is the isentropic relation 

𝑑𝑝

𝑑𝜌
= (

𝜕𝑝

𝜕𝜌
)
𝑠

= 𝑎2 

where 𝑎 is the speed of sound. 

2.1. Quasi-One-Dimensional Flow 

The flow through a variable-area duct is three-dimensional in reality. But with the quasi-one-

dimensional assumption, the flow through the area-variable duct varies only as a function of 𝑥, 

i.e., 𝑢 = 𝑢(𝑥), 𝑝 = 𝑝(𝑥), etc. This assumption that flow properties are uniform across any 

given cross section represent values that are some kind of mean of the actual flow properties 

distributed over the cross section clearly shows that the quasi-one-dimensional flow is an 

approximation to the actual physics of the flow. 
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Consider an incremental volume as shown in fig. 1.  

 
Figure 1. Incremental Volume 

Considering this infinitesimal control volume for conservation of mass, momentum and 

energy equation, and a few algebraic simplifications we get 

 
𝑑(𝜌𝑢𝐴) = 0, (1) 

 

 
𝑑𝑝 = −𝜌𝑢 𝑑𝑢, (2) 

 
𝑑ℎ + 𝑢 𝑑𝑢 = 0 (3) 

 

where ℎ is the specific enthalpy. 

Equations (1) and (2) along with the isentropic relation gives 

 𝑑𝐴

𝐴
= (𝑀2 − 1)

𝑑𝑢

𝑢
 (4) 

 

Equation (4) is called the area-velocity relation. It can be inferred from Equation (4) that for a 

gas to expand isentropically from subsonic to supersonic speeds, it must flow through a 

convergent-divergent duct. 

Depending on the exit conditions, the flow through a convergent-divergent nozzle can be 

categorised in 3 broad cases. The results from each case are discussed without proof. Derivation 

is beyond the scope of this case study. 

2.1.1. Isentropic Expansion from Subsonic to Supersonic Speeds 

When the inlet pressure is specified, but no details about the exit conditions are known except 

that 𝑝𝑒𝑥𝑖𝑡 < 𝑝𝑖𝑛 = 𝑝𝑜. The subsonic flow at the inlet expands isentropically, in the convergent 

section, to sonic speed at the throat where it expands, in the divergent section, further to 

supersonic speed at the exit. The flow properties are governed by the isentropic relation. 
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The variation of Mach number and pressure along the nozzle is shown in fig. 2. At the throat, 

the flow is sonic. Hence, denoting conditions at sonic speed by an asterisk (*). 

 
Figure 2. Isentropic supersonic nozzle flow [1]. 

2.1.2. Isentropic Subsonic Flow 

When the inlet and exit pressure is specified and the pressure ratio is weak, i.e., 𝑝𝑒𝑥𝑖𝑡/𝑝𝑖𝑛 < 1 

and also close to 1. The subsonic flow from inlet speeds up as it reaches the throat. At the throat 

the flow is still subsonic. The flow then slows down along the divergent section until exit. The 

flow remains subsonic throughout the nozzle. 
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The variation of Mach number and pressure along the nozzle is shown in fig. 3. At the throat, 

the flow is still subsonic. Therefore, there are no asterisk properties. The local Mach number 

reaches the maximum at the throat, where the cross-sectional area is the minimum, denoted by 

𝐴𝑡 . 

 
Figure 3. Subsonic flow in a convergent-divergent nozzle [1]. 
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2.1.3. Supersonic Flow with a Normal Shock 

When the inlet and exit pressure is specified and the pressure ratio is strong, i.e., 𝑝𝑒𝑥𝑖𝑡/𝑝𝑖𝑛 < 1 

and also not close to 1. The subsonic flow at the inlet expands isentropically, in the convergent 

section, to sonic speed at the throat. A normal shock wave exists inside the divergent duct. This 

situation is shown in fig. 4. Isentropic relations are not valid in this section. 

 
Figure 4. Flow with a shock wave inside a convergent-divergent nozzle [1]. 

The location of the normal shock wave in the duct is determined by the requirement that the 

increase of static pressure across the wave plus that in the divergent portion of the subsonic 

flow behind the shock be just right to achieve 𝑝𝑒4 (as in fig. 4), at the exit. As the exit pressure 

is reduced further, the normal shock wave will move downstream, closer to the nozzle exit. 
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3. Implementation in OpenFOAM 

3.1. Problem Statement  

The problem considers flow of air through a convergent-divergent nozzle. The inlet pressure 

(𝑝𝑖𝑛) and temperature is 10000 Pa and 298 K respectively. 

The simulation is run for 3 different exit conditions 

1. 𝑝𝑒𝑥𝑖𝑡 = 1600 Pa. Isentropic Expansion from Subsonic to Supersonic Speeds. 

2. 𝑝𝑒𝑥𝑖𝑡 = 8900 Pa. Isentropic Subsonic Flow. 

3. 𝑝𝑒𝑥𝑖𝑡 = 7500 Pa. Supersonic Flow with a Normal Shock. 

3.2. Geometry & Meshing  

A convergent divergent nozzle of geometry as shown in fig. 5 is considered. The nozzle cross-

section varies as 

𝐴(𝑥) =  {
1.75 −  0.75cos( 0.2𝑥 − 1)𝜋, 0 < 𝑥 ≤ 5

1.25 −  0.25cos( 0.2𝑥 − 1)𝜋, 5 < 𝑥 ≤ 10
 

 

 
Figure 5. The configuration of flow through a convergent-divergent nozzle. 

The geometry is an axi-symmetric nozzle, therefore a wedge is considered for the analysis. The 

geometry was created using blockMesh utility. The meshing is simpleGrading. 

 
Figure 6. Meshing of the wedge. 
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3.3. Initial & Boundary Conditions  

 

 

 

Since the flow is axi-symmetric, both the wedge faces are assigned ‘wedge’ boundary 

condition. 

3.4. Solver  

The flow through convergent-divergent nozzle governing equations, as described in section 2, 

are solved using rhoCentralFoam [2]. The thermophysical properties of air, assuming perfect 

gas, is used. The simulation type is laminar. 

Case 1. Isentropic Expansion from Subsonic to Supersonic Speeds 

Pressure 

Inlet 10000 Pa 

Nozzle Zero Gradient 

Outlet 1600 Pa 

Velocity 

Inlet Zero Gradient 

Nozzle Slip 

Outlet Zero Gradient 

Temperature 

Inlet 298 K 

Nozzle Zero Gradient 

Outlet Zero Gradient 

Case 2. Isentropic Subsonic Flow 

Pressure 

Inlet 10000 Pa 

Nozzle Zero Gradient 

Outlet 8900 Pa 

Velocity 

Inlet Zero Gradient 

Nozzle Slip 

Outlet Zero Gradient 

Temperature 

Inlet 298 K 

Nozzle Zero Gradient 

Outlet Zero Gradient 

Case 3. Supersonic Flow with a Normal Shock 

Pressure 

Inlet 10000 Pa 

Nozzle Zero Gradient 

Outlet 7500 Pa 

Velocity 

Inlet Zero Gradient 

Nozzle Slip 

Outlet Zero Gradient 

Temperature 

Inlet 298 K 

Nozzle Zero Gradient 

Outlet Zero Gradient 
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4. Results  

The simulations are run on OpenFOAM 5.0 and the post processing is done using ParaView.  

4.1. Case 1: Isentropic Expansion from Subsonic to Supersonic Speeds 

The pressure field at steady-state in the 𝑥𝑦-plane is shown in fig. 7. 

  
Figure 7. Steady-state pressure field. 

The Mach number and pressure variation along the nozzle is shown in fig. 8 and fig. 9 

respectively. 

  
Figure 8. Variation of Mach number along the nozzle. 

The pressure and Mach number profiles match with the theoretical observation discussed in 

section 2.1.1. 

The flow, as indicated in fig. 8, reaches sonic speed at the throat, from where it expands to 

supersonic speeds at the exit. 

The pressure variation, as indicated in fig. 9, also follows the isentropic relation throughout the 

nozzle. 
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Figure 9. Variation of pressure along the nozzle. 

4.2. Case 2: Isentropic Subsonic Flow 

The pressure field at steady-state in the 𝑥𝑦-plane is shown in fig. 10. 

   
Figure 10. Steady-state pressure field. 

The Mach number and pressure variation along the nozzle is shown in fig. 11 and fig. 12 

respectively. 

 
Figure 11. Variation of Mach number along the nozzle. 
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The pressure and Mach number profiles match with the theoretical observation discussed in 

section 2.1.2. 

The flow, as indicated in fig. 11, remains subsonic throughout the nozzle. 

 
Figure 12. Variation of pressure along the nozzle. 

 

4.3. Case 3: Supersonic Flow with a Normal Shock 

The pressure field at steady-state in the 𝑥𝑦-plane is shown in fig. 13. 

 
Figure 13. Steady-state pressure field. 

The Mach number and pressure variation along the nozzle is shown in fig. 14 and fig. 15 

respectively. 

The pressure and Mach number profiles match with the theoretical observation discussed in 

section 2.1.3. 

The flow, as indicated in fig. 14, reaches sonic speed at the throat, from where it expands to 

supersonic speed till the location of normal shock. After the shock the flow slows down and 

remains subsonic for the latter section of the nozzle. 
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Figure 14. Variation of Mach number along the nozzle. 

The shock is located at 𝑥 = 7.5. This result agrees well with the analytical solution  

(𝑥 = 7.5623). 

 
Figure 15. Variation of pressure along the nozzle. 
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5. Conclusion 

The flow of air through a convergent-divergent nozzle using OpenFOAM solver 

rhoCentralFoam. The simulation produced expected result. The results, especially in the 

supersonic flow with normal shock, could have been captured better with a more refined mesh. 

Adaptive meshing could also be used to capture the shock better. The problem used for 

simulation is taken from NASA CFD benchmark case [3]. The simulated results match well 

with analytical solution. 
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