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1. Introduction 

Consider an incompressible, inviscid flow over a cylinder. Theoretical analysis shows that the 

flow wraps around the cylinder with the flow being symmetrical in both halves of the cylinder. 

It has two stagnation points, one in the front and the other behind the cylinder. Such a flow is 

shown in fig. 1. This kind of flow leads to the theoretical result that the pressure drag is zero. 

In reality, that isn’t the case. This is called the d’Alembert’s paradox. 

 
Figure 1. Ideal flow across a cylinder [1]. 

Now, consider the cylinder to be rotating, say in the clockwise direction. The flow field is 

shown in fig. 2. 

   
Figure 2. Flow across a rotating cylinder [1]. 

Above the cylinder, the flow is faster as the rotation of the cylinder is in the same direction as 

the free stream. Below the cylinder, the flow is slowed down as the rotation of the cylinder 

opposes the motion of free stream. This anomaly in flow above and below the cylinder creates 

a high pressure region below the cylinder and a low pressure region above the cylinder. The 

difference in pressure generates a lift on the cylinder. 
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2. Governing Equations 

The Navier-Stokes equations for a viscous incompressible flow in an arbitrary domain is 

𝜌 (
𝜕𝑢⃗ 

𝜕𝑡
+ ∇. (𝑢⃗ 𝑢⃗ )) = ∇𝑝 + ∇. 𝑅̿ + 𝑆 𝑢 

where all symbols have their usual meaning. 𝑅̿ is the stress tensor (symmetric) and 𝑆 𝑢 is the 

momentum source. The stress tensor is given by 

𝑅̿ = 𝜇(∇𝑢⃗ + ∇𝑢⃗ 𝑇) 

The Navier-Stokes equation is supplemented with the incompressibility condition 

∇. 𝑢⃗ = 0  

Given a fluid (𝜌, 𝜇), we have four equations and four unknowns (𝑢⃗  and 𝑝). 

2.1. Lifting Flow over a Cylinder  

Consider a flow that is the combination of a non-lifting flow over a cylinder and a vortex of 

strength Γ, as shown in fig. 3. 

 
Figure 3. The synthesis of lifting flow over a cylinder [1]. 

The stream function for the non-lifting flow over the cylinder of radius 𝑅, in polar coordinates, 

is given by 

 
𝜓1 = 𝑉∞𝑟 sin 𝜃 (1 −

𝑅2

𝑟2
) (1) 

The stream function for the vortex of strength Γ is given by Eq. (2). The stream function is 

determined by an arbitrary constant. 

 
𝜓2 =

Γ

2𝜋
ln 𝑟 + const (2) 
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Since the value of the constant is arbitrary, let 

 
const = −

Γ

2𝜋
𝑅 (3) 

Combining Eq. (2) and (3), 

 
𝜓2 =

Γ

2𝜋
ln

𝑟

𝑅
 (4) 

The resulting stream function for the flow over a rotating cylinder is given by, 

 
𝜓 = 𝜓1 + 𝜓2 = 𝑉∞𝑟 sin 𝜃 (1 −

𝑅2

𝑟2
) +

Γ

2𝜋
ln

𝑟

𝑅
 (5) 

 

The streamlines given by Eq. (5) are sketched at the right of fig. 3. 

The velocity components for the flow is given by, 

 
𝑉𝑟 =

1

𝑟

𝜕𝜓

𝜕𝜃
= 𝑉∞ cos 𝜃 (1 −

𝑅2

𝑟2
) 

 

(6) 

 𝑉𝜃 = −
𝜕𝜓

𝜕𝑟
= −𝑉∞ sin 𝜃 (1 +

𝑅2

𝑟2
) −

Γ

2𝜋𝑟
 (7) 

On the surface of the cylinder, 𝑟 = 𝑅. Substituting in Eq. (6) and (7), 

 𝑉𝑟 = 0, 𝑎𝑛𝑑      𝑉𝜃 = −2𝑉∞ sin 𝜃 −
Γ

2𝜋𝑅
 (8) 

The pressure coefficient is obtained by, 

 𝐶𝑝 = 1 − (
𝑉

𝑉∞
)
2

= 1 − (
𝑉𝜃

𝑉∞
)
2

= 1 − (−2 sin 𝜃 −
Γ

2𝜋𝑅𝑉∞
)
2

 (9) 

 

The flow is assumed to be inviscid, i.e. 𝑐𝑓 = 0. Therefore, the lift coefficient on the cylinder is 

evaluated as 

 𝑐𝑙 =
1

𝑐
∫ 𝐶𝑝,𝑙 𝑑𝑥 −

𝑐

0

1

𝑐
∫ 𝐶𝑝,𝑢 𝑑𝑥

𝑐

0

 (10) 

Converting to polar coordinates,  

𝑥 = 𝑅 cos 𝜃        𝑑𝑥 = −𝑅 sin 𝜃 𝑑𝜃 

Therefore, Eq. (10) becomes, 

 𝑐𝑙 = −
1

2
∫ 𝐶𝑝,𝑙  sin 𝜃 𝑑𝜃 +

2𝜋

𝜋

1

2
∫ 𝐶𝑝,𝑢  sin 𝜃 𝑑𝜃

0

𝜋

 (11) 
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The expression for 𝐶𝑝,𝑙 and 𝐶𝑝,𝑢 is given by the same expression for 𝐶𝑝, Eq. (9). Therefore,  

Eq. (11) becomes, 

 𝑐𝑙 = −
1

2
∫ 𝐶𝑝  sin 𝜃 𝑑𝜃

2𝜋

0

 (12) 

Substituting Eq. (9) in (12), and integrating,  

 𝑐𝑙 =
Γ

𝑅𝑉∞
 (13) 

By definition, the lift per unit span is given by, 

𝐿′ =
1

2
𝜌∞𝑉∞

2𝑆𝑐𝑙 

where the planform area 𝑆 = 2𝑅(1). Therefore, 

 𝐿′ = 𝜌∞𝑉∞Γ (14) 

Eq. (14) is the mathematical formulation of the Kutta-Joukowski theorem, which states that 

‘lift per unit span is directly proportional to circulation’. 

2.2. Magnus Effect  

The general ideas discussed above concerning the generation of lift on a spinning circular 

cylinder in a wind tunnel also apply to a spinning sphere. This explains why a baseball pitcher 

can throw a curve and how a golfer can hit a hook or slice - all of which are due to non-

symmetric flows about the spinning bodies, and hence the generation of an aerodynamic force 

perpendicular to the body’s angular velocity vector as shown in fig. 4. This phenomenon is 

called Magnus effect, named after the German physicist Gustav Magnus, who was the first 

person to venture on a rigorous investigation into the physics entailed.  

 
Figure 4. Generation of lift on a spinning cylinder [1]. 

Today, the Magnus effect has an important influence on the performance of spinning missiles; 

indeed, a certain amount of modern high-speed aerodynamic research has focused on the 

Magnus forces on spinning bodies for missile applications. 
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3. Implementation in OpenFOAM 

3.1. Problem Statement  

The problem considers unsteady, incompressible, viscous flow over a cylinder of diameter 

20 cm rotating at 200 rad/s in the clockwise direction. The cross-flow is 𝑅𝑒 = 2,00,000, 

hence turbulent. The kinematic viscosity of the fluid is 𝜈 = 10−5 m2/s. 

3.2. Geometry & Meshing  

The computational domain is shown in fig. 5. The domain is a circle of radius 2 m. The circular 

hole in the domain, of diameter 20 cm, is the location of the cylinder. The geometry is a disk 

of thickness 10 cm. 

  
Figure 5. The configuration of flow across a rotating cylinder. 

The meshing is done using Gmsh 3.0.0. Unstructured mesh is used in most of the domain except 

near the surface of the cylinder, where structured, refined mesh is used. The mesh in the domain 

and near the cylinder is shown in fig. 6𝑎 and 6𝑏. 

The unstructured mesh in the domain is coarse at the domain boundary and gets finer closer to 

the cylinder as indicated in fig. 6𝑎. 

The structured mesh has the same refinement throughout the section near the cylinder. 

Only one cell is considered alone the 𝑧 direction making the simulation 2D in 𝑥𝑦-plane. 
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(a)                                                                              (b) 

Figure 6. Mesh configuration; (a) in the domain; (b) near the cylinder 

3.3. Initial & Boundary Conditions  

The boundary conditions for various faces are described below: 

a) Domain Boundary: Outer face of the domain 

 

Pressure (𝑝) Zero Gradient 

Velocity vector (𝑢⃗ ) (10, 0, 0) m/s 

 

b) Cylinder: Inner face of the domain 

 

Pressure (𝑝) Zero Gradient 

 

The velocity boundary condition looks like 

    cylinder 

    { 

        type            rotatingWallVelocity; 

        origin          ( 0 0 0 ); 

        axis            ( 0 0 1 ); 

        omega           -200; 

    } 

 

The condition says that the velocity at the cylinder boundary is rotational about the 𝑧-axis, 

passing through the origin and of magnitude 200 rad/s. 
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3.4. Solver  

The turbulent flow over a rotating cylinder governing equations, as described in section 2, are 

solved using pimpleFoam. For turbulence modelling, the k-Epsilon RAS model is used. The 

value of 𝑘 = 0.00325 and 𝜀 = 0.000765 are used to start the calculations throughout the 

domain. Respective wall functions are used on the cylinder boundary. 

 

4. Results 

The simulations are run on OpenFOAM 2.3 and the post processing is done using ParaView. 

The velocity magnitude and pressure contours at 𝑇 = 1 are shown in fig. 7𝑎 and 7𝑏 

respectively. 

   
 (a)                                                                      (b) 

Figure 7. (a) Velocity magnitude; (b) pressure contour at 𝑇 = 1.  

The velocity magnitude and pressure contours at 𝑇 = 1 near the cylinder is shown in fig. 8𝑎 

and 8𝑏. 

As clearly indicated in the fig. 8𝑎, the flow is faster above the cylinder and slower below it. 

Also, the presence of 2 stagnations regions, in front and behind the cylinder, are clearly visible 

in fig. 8𝑎. 

Fig. 8𝑏 shows that the pressure above the cylinder is less than the free stream pressure and the 

pressure above the cylinder is more than the free stream pressure. This disparity of pressure 

above and below the cylinder indicates the presence of an upward force on the cylinder, the 

Magnus force. 
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(a) 

 
(b) 

Figure 8. (a) Velocity magnitude; (b) pressure contour at 𝑇 = 1 near the cylinder. 

The streamlines near the cylinder at 𝑇 = 1 is shown in fig. 9 

 
Figure 9. Streamlines at 𝑇 = 1 near the cylinder. 
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The streamlines at 𝑇 = 1, as shown in fig. 9, agree well with literature [2]. The two points, 

where the streamlines are normal to the surface of the cylinder, indicate the two stagnation 

points. The stagnation point behind is not as well defined as in the front of the cylinder 

because of turbulence and the formation of vortices in the region. 

4.1. Laminar Flow  

The problem is simulated for a laminar flow by considering a less viscous fluid with a kinematic 

viscosity of 𝜈 = 10−2 m2/s. The Reynolds number of the flow is 𝑅𝑒 = 200 which is in the 

laminar regime. The turbulence model is set to laminar. All the other parameters are unaltered.  

The streamlines at 𝑇 = 1 is shown in fig. 10. 

 
Figure 10. Streamlines at 𝑇 = 1 near the cylinder. 

On comparison with the streamlines for the turbulent flow (fig. 9), it can be observed that the 

flow separates much ahead in laminar flow compared to that in turbulent flow. This observation 

agrees with the literature, with the higher momentum in the boundary layer for the turbulent 

flow accounting for the same. 

 

5. Conclusion 

The turbulent flow across a rotating cylinder was simulated using OpenFOAM solver 

pimpleFoam. The simulation produced expected result. The phenomenon of Magnus effect was 

observed. The simulation indicated the presence of pressure difference above and below the 

cylinder and hence an upward force, known as the Magnus force, on the cylinder. The 

streamlines agree well with the literature [2] and indicates the presence of vortices behind the 

cylinder, which is expected in a turbulent flow. The flow was also simulated for a less viscous 

fluid to study the effects of laminar flow across a rotating cylinder. The delayed flow separation 

in turbulent flow was observed on comparison with the laminar streamlines for the same flow 

parameters. 
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